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Abstract. The anomalous dispersion found by inelastic neutron scattering in one of the 
vibron bands in solid tetracyanoethene appears to be due to the electrostatic interactions 
that couple the infrared-active intramolecular vibrations via the transition dipole resonance 
mechanism. This is demonstrated by way of both numerical lattice dynamics calculations 
and a simple mathematical analysis, which relates the Fourier components of the dispersion 
curves in specific directions of the wavevector k to two-dimensional lattice sums over the 
dipole-dipole interactions between layers perpendicular to k .  Only for specific orientations 
of the molecular transition dipole moments in a solid and for specific directions of k will this 
lead to a dispersion curve of irregular shape. 

1. Introduction 

Tetracyanoethene (TCNE), being one of the strongest n-electron acceptors commonly 
used in electron donor/acceptor complexes, has been studied extensively. Several of 
these studies address the vibrational spectrum of TCNE (Miller et aZ1964, Takenaka and 
Hayashi 1964, Rosenberg and Devlin 1965, Popov et aZ1966, Hinkel and Devlin 1973, 
Yokoyama and Maeda 1980, Michaelian etaZ1982), both in soiution and in the crystalline 
state. A wide-ranging experimental and theoretical study of the lattice vibrations 
(phonons) and the coupled internal vibrations (vibrons) in solid TCNE has been made by 
Chaplot et aZ (1983). These authors have measured phonon and vibron dispersion 
relations by inelastic neutron scattering and they have calculated the corresponding 
dispersion curves by lattice dynamics methods, using a simplified force field for the lowest 
intramolecular vibrations and an empirical atom-atom potential for the intermolecular 
interactions. Generally, the calculated dispersion relations agree well with experiment 
provided that the mixing between the lowest internalvibrations and the lattice vibrations 
is taken into account. 

One of the branches showed an unusually strong dispersion, however, which has 
been determined both by constant-wavevector scans and by constant-energy scans with 
the triple-axis neutron spectrometer, but which is not reproduced in any way by the 
calculations. The calculations gave a smooth and rather flat energy dependence for this 
branch with no sign of the observed anomalous dispersion, even when phonon-vibron 
mixing and the mixing between the vibron modes associated with different internal 
vibrations were included. Chaplot et aZ (1983) speculated that the electrostatic inter- 
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Table 1. Free molecular vibrations of TCNE. 

Frequency (cm-')? 

Symmetry 
( D 2 h )  VFF 

Rigid 

model 
C - e N  

bu 81 
a" 88 
a8 133 
b," 146 
bl" 182 
b3, 239 
b2, 260 
bl, 375 
a" 425 
b?" 440 
b3, 452 
a8 489 
b3" 524 
b," 559 
a, 559 
b2, 682 
b," 956 
b2" 1152 
b,, 1278 

1571 
b," 223 1 
a, 2235 
b2" 2253 
b3, 2256 

74 
74 

102 
152 
154 
250 
353 

Observed 
rR/Raman 
spectra Character of normal mode 

(NC)-C-(CN) rocking 
C=C torsion 

130 (NC)-C-(CN) scissoring 
180 (NC)-C-(CN) wag 
165 (NC)-C-(CN) scissoring 
254 (NC)-C-(CN) rocking 
25 1 (NC)-C-(CN) wag 
360 C - G N  bend (out-of-plane) 
410 C-&N bend (out-of-plane) 
443 C-&N bend (in plane) 

C-&N bend (in plane) 
490 C-C stretch/C-C=N bend 
555 C-&N bend (out-of-plane) 
579 C - G N  bend (in plane) 
535 C-C stretch/C-& bend 
674 C - G N  bend (out-of-plane) 
958 C-C stretch 

1155 C-C stretch 
1282 C-C stretch 
1569 C=C stretch 
2230 C=N stretch 
2235 C k N  stretch 
2263 G N  stretch 
2247 &N stretch 

t 1000 cm-' = 29.98 THz 

actions, which had not been included in the lattice dynamics calculations, might be 
responsible for this anomalous dispersion. In the present paper we shall show explicitly 
the effects of including the electrostatic interactions and the use of a more realistic intra- 
molecular force field. We shall demonstrate the physical explanation for the anomalous 
dispersion and discuss the conditions for which this phenomenon can occur in TCNE, as 
well as in other systems. 

2. Internal vibrations 

Empirical valence force fields (VFF) (Hinkel and Devlin 1973, Michaelian et a1 1982) and 
Urey-Bradley force fields (Takenaka and Hayashi 1944, Rosenberg and Devlin 1945, 
Yokoyama and Maeda 1980) for the free molecular vibrations in TCNE have been 
determined from the experimental infrared and Raman spectra. In our calculations we 
have used the vwparameters of Hinkel and Devlin (1973) for the in-plane vibrations and 
those of Michaelian et a1 (1982) for the out-of-plane motions. The molecular vibrational 
frequencies and the corresponding normal mode eigenvectors have been determined by 
the standard GF matrix method (Wilson et a1 1955). We observe (see table 1) that the 
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seven lowest-frequency vibrations do indeed correspond to the scissoring, rocking, 
wagging and torsional motionsof the (NC)-C-(CN) groups, but also that the C-(%N 
bending motions admix to a considerable extent. For instance, in the b,, wagging mode 
discussed in § 4 ,  the C-C bonds bend out of the molecular plane by 1.5" (C=(C < $) 
vagging angle 3.0"), but the C-G=N groups also bend by 1.5". In other words the 
C-C=N groups do not really behave as rigid units in these low-frequency vibrations. 
We have also simulated the rigid C - e N  model of Chaplot er a1 (1983) by making all 
stretch force constants and the C - e N  bending force constant infinitely high and 
adapting the remaining VFF constants to obtain practically the same frequencies as 
Chaplot et a1 (1983). The eigenvectors are completely determhed by symmetry in this 
model, but some of the frequencies differ considerably from those obtained in the 
complete VFF model (see table 1) .  This confirms the non-rigid nature of the C - e N  
groups in the low-frequency modes. 

3. Lattice dynamics calculations 

The calculations of the phonon and vibron dispersion relations are based on the standard 
harmonic lattice dynamics method, as extended to internal vibrations by Taddei et a1 
(1973) and Califano et a1 (1981). We include the full self-term (Neto er a1 1976, Net0 and 
Kirin 1979), in order to ensure complete translational and rotational invariance of the 
harmonic lattice Hamiltonian. For the internal vibrations we use the normal mode 
eigenvectors from the free molecular calculations (described in § 2), transformed from 
a molecular system of axes to the crystal frame. The calculated free molecule frequencies 
are replaced by experimental values, as far as available (see table 1) .  

The intermolecular potential is represented by an atom-atom potential V ( r )  = 
B, exp(-Cijr) - A,F6 + qiqjr-l with the same parameters A,,  B, and C, as used by 
Chaplot et a1 (1983). The electrostatic interactions have been added, however, and the 
fractional atomic charges qi have been determined by the following procedure. Given 
the charge neutrality of the TCNE molecule as a whole and its D,, symmetry, only two 
parameters q i  can be determined independently. These parameters can be obtained 
from the quadrupole moment tensor of the molecule which has also two independent 
components. Calculating the quadrupole moment of TCNE by means of ab initio LCAO- 
SCF calculations in one of the standard A 0  basis sets with the program GAMESS (Dupuis 
et a1 1980) yields qc = -0.190e, for the C=C carbon atoms, qb = t-0.489e for the C=N 
carbon atoms and qN = -0.394e, if the split-valence 3-21G basis is used (and not very 
different values for the minimal STO-3G basis). Since later in this paper we shall 
concentrate on the b3" out-of-plane (NC)-C-(CN) wagging mode, we have also made 
ab initio calculations for TCNE deformed along the normal coordinate of this mode. Thus, 
we could calculate numerically the dipole moment derivative along the b3u wagging 
mode and compare the ab initio value with the value derived from the point charges 
obtained previously. The agreement is reasonably good: the point-charge model adapted 
to the static quadrupole tensor yields a dipole derivative which is 20% too large (or 20% 
too small if we use the normal coordinate of the simplified wagging model with rigid 
C--N groups). Furthermore, we have found that even the changes in the quadrupole 
moment upon deformation are reasonably well represented by the point-charge model. 
So we use these point charges? to represent the electrostatic interactions between the 
t Another way to obtain fractional atomiccharges fromab initioLcAo-ScFcalculationsproceedsviaa Mulliken 
population analysis. It is well known among quantum chemists, however, that the Mulliken atomic charges 
form a poor representation of the electrostatic interactions. We have also reached this conclusion in the 
present case. 
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molecules and their dependence on the internal vibrations. Before performing the actual 
lattice dynamics calculations we optimised the unit cell parameters and the molecular 
orientations. Addition of the electrostatic interactions to the intermolecular potential 
did not significantly change the optimised crystal geometry already calculated by Chaplot 
et a1 (1983), except that the unit cell becomes slightly too compact. We would have to 
re-optimise the empirical parameters A,! B, and Cij in the atom-atom potential, after 
the addition of the electrostatic interactions, in order to recover the correct unit cell 
volume. 

4. Vibron and phonon dispersion relations 

Neutron scattering experiments (Chaplot et al 1983) were performed on TCNE in the 
monoclinic phase, space group P2,/n, supercooled to 5 K. The two molecules in the unit 
cell are centred at (0, 0,O) and (a/2, b/2, c/2), respectively, and they are related by a 
screw axis 2, along the b direction and a glide plane parallel to the ac plane. We use the 
same convention as Chaplot et a1 (1983) for displaying the phonon and vibron dispersion 
curves along the a*,  b* and c* directions of the Brillouin zone and defining the symmetry 
of the normal modes with respect to the screw axis and the glide plane. 

When we omit the electrostatic interactions from our calculations, we obtain prac- 
tically the same dispersion curves as Chaplot et aZ(1983) for the lowest 26 modes, which 
originate from the three translational vibrations, three librations and the lowest seven 
internal vibrations of the two molecules in the unit cell. So the use of non-rigid C-CSN 
groups in the intramolecular force field practically does not influence the dispersion 
relations at this level. (We shall later observe that it does when the electrostatic inter- 
actions are included.) Apart from the anomalous dispersion along the a* direction 
observed in the mode around 5.5 THz, the agreement with the experimental dispersion 
curves shown in figure 1 is rather good and we obtain substantial mixing between the 
highest lattice modes and the lowest internal modes, just as found by Chaplot etaZ(l983). 

The addition of electrostatic interactions through the point-charge model discussed 
in 0 3 yields the dispersion curves shown in figure 2. Although most of the phonon/ 
vibron dispersion curves are not much affected, their resemblance to the experimental 
picture (figure 1) becomes slightly better in general. All the frequencies are too high, 
however, which is due to the compactness of the unit cell calculated with the point 
charges without re-optimising the remainder of the atom-atom potential. Also we find 
too strong a dispersion of some of the higher modes in figure 2 along the b* direction, 
which is due to artificial mixing between these modes, some of which are raised more 
than others. 

Let us now concentrate on the mode around 5.5 THz in figure 1 (experimental), 
which displays the anomalous dispersion in the a* direction. In figure 2 (calculated) this 
mode lies around 7 THz and we clearly observe an irregular shape of its dispersion curve 
along the a* direction which resembles the shape of the experimental curve. Since the 
corresponding curve calculated without the addition of point charges to the atom-atom 
potential is completely structureless, as in Chaplot et a1 (1983), we conclude that the 
anomalous dispersion of this branch is indeed caused by the electrostatic interactions 
between the molecules. In 0 5, we shall investigate its shape and its physical origin in 
more detail. First we establish, by inspecting the eigenvector of the mode which displays 
the anomalous dispersion, that this mode is purely the b3u out-of-plane wagging mode 
of the TCNE molecules. Inclusion of just this mode in the lattice dynamics model yields 
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Figure 3. Vibron dispersion of the b3" out-of-plane wagging mode from lattice dynamics 
calculations, using the atom-atom potential with the fractional atomic charges. The disper- 
sion curves for wavevectors k along the a* direction in the Brillouin zone of the vibron modes 
that are symmetric/antisymmetric with respect to the crystal glide plane are shown for an 
increasing radius R of truncation of the lattice sums. 

the dispersion curve shown in figure 3, which is practically identical to the curve from 
the complete calculation, if we take the same radius of truncation ( R  = 30 A) of the 
lattice sum over the intermolecular interactions. So the effects of phonon-vibron mixing 
or mixing between different internal vibrations which, via avoided crossings, are known 
to yield rather typical dispersion behaviour in many instances, are not relevant in this 
case. On the other hand, we observe that the shape of the unusual dispersion curve is 
very sensitive to changes of the fractional atomic charges and to an increase of the radius 
of truncation of the lattice sum. The dispersion curve in figure 3 calculated with the 
largest radius, R = 50 A, shows a striking similarity in shape to the experimental curve, 
shown in detail in figure 4.  This shape is also altered by replacement of the intramolecular 
wagging eigenvector from the complete VFF calculation by the eigenvector from the 
simplified model with rigid C - e N  groups. By means of a further analysis of the 
calculated and experimental dispersion curves in 0 5 ,  we conclude that the coupling 
between the intramolecular wagging vibrations which leads to the unusual dispersion of 
the corresponding vibron band in the U* direction is due to transition dipole-dipole 
interactions. As is shown by its strong infrared activity (Chaplot eta1 1983), the transition 
dipole moment associated with the b3u out-of-plane wagging vibration is indeed large. 
We next discuss the conditions under which such a large transition dipole moment can 
cause unusual dispersion relations. 

5.  Anomalous vibron dispersion from transition dipole-dipole coupling 

From the observation that vibron dispersion curves are mostly rather smooth and flat, 
except near avoided crossings, it may be concluded that the mere occurrence of relatively 
large vibrational transition dipole moments is not sufficient to cause such a strong 
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Figure 4. Fourier analysis of the experimental vibron branch in figure 1 which shows the 
anomalous dispersion. The curves marked in the key include higher and higher Fourier 
components cos($mkd/2). As explained in the text, these Fourier components correspond 
to the intermolecular couplings between crystal layers perpendicular to the a* axis with 
increasing distances imd, where m = 1, 2, 3, 4, 8 and 12 (e.g. max = 1' corresponds to a 
maximum value m = 3). 

dispersion as found in one particular vibron band of solid TCNE. Here we investigate the 
required additional conditions. 

A quantum mechanical system of molecules that vibrate in a single normal mode 
with (unperturbed) frequency wo, which are coupled via transition dipole-dipole inter- 
actions, may be replaced (in the sense that it has the same dispersion relations) by a 
model of oscillating dipoles with eigenfrequency wo that interact via classical dipole- 
dipole interactions. Let us take a lattice of such dipoles with two equivalent sublattices, 
as is the case in solid TCNE. The transition dipole moment for the b3" out-of-plane wagging 
mode in TCNE lies perpendicular to the molecular plane. So the molecular orientations 
in the solid fix the directions (6, cp) and ( O ' ,  cp') of the oscillating dipole moments in the 
two sublattices. The dipole moments are written as p = (ap./dQ)Q, where Q is the 
normal coordinate of the free molecule vibration. This yields the dispersion relations 

w%(k)  = wi + A(k)  k A'(k) (1) 
where A(k) and A'(k) are the intra- and inter-sublattice couplings between Bloch waves 
of oscillating dipoles with wavevector k .  For a given direction of k in the Brillouin zone 
(for instance, either one of the a* , b* and c* directions shown in figures 1 and 2), we can 
write 

A(k) = Fo0 + 2 Fon cos(knd) 
n = l  

* 

A'(k)  = 2 2 FOa8 cos[k(n'd + d')] 
n'=O 

where k is the length of the vector k. The labels n and n'  run over layers perpendicular 
to the wavevector k .  The layers n are of the same sublattice as the layer n = 0, the layers 
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n’ belonging to the other sublattice; d is the distance between subsequent layers of the 
same sublattice and d‘ is the distance between layer n = 0 and the nearest layer of the 
other sublattice. The quantities F,, and FO,# are two-dimensional lattice sums over layers 
perpendicular to k ,  which can be expanded in a two-dimensional Fourier series (Steele 
1973) 

For a lattice of interacting dipoles, the Fourier coefficients can be evaluated analytically 
(Nijboer and De Wette 1958): 

V , k >  = ( ~ J ~ I ~ P / ~ Q I ~ / o , ) B ( O ,  rp, 6, q ,  V,)exp(-gnd) 
(4) 

u,,(g) = ( 2 J t I d P / ~ Q l 2 / 4 B ( ~ ,  q ,  6‘7 q ’ ,  cp,)gexp[-g(n’d+ 0 1 .  
The vectors T, and T,, describe the parallel displacements of the layers relative to the 
layer n = 0. The vector g is a two-dimensional reciprocal lattice vector perpendicular to 
k,  g is the length of this vector, qg its direction and O, the area of the two-dimensional 
unit cell. The function B equals - 1 in the special case treated by Nijboer and De Wette 
(1958). In general, it depends on the polar angles (6, q) and (sl, q ’ ) ,  which describe 
the orientations of the dipole moments in the two sublattices, relative to a frame which 
has its z axis parallel to the wavevector k: 

B(6, , TI , 6 2  , q 2  9 q g )  = [sin 61 COS(Vg - 91 1 )  + i cos 611 

x [sin 62 cos(qg - q 2 )  + i cos 02] .  ( 5 )  
For specific directions of the wavevector k the crystal symmetry, i.e. the screw axis or 
the glide plane, will induce special relations between (6, q) and (sl, q’ ) .  

According to equations (1) and (2), the intra- and inter-sublattice coupling constants 
F,, and Font, which are given by equations (3) to ( 5 ) ,  are the Fourier components of 
the dispersion curves o + ( k )  and w - ( k ) ,  considered along specific directions of the 
wavevector k .  In figure 4 we show a Fourier analysis of the experimental dispersion curve 
fork along the U* direction, which displays the anomalous dispersion. We observe that 
rather high Fourier components contribute to this curve, which is not surprising given 
its irregular shape. The same effect is shown by the calculated results in figure 3: the 
dispersion curve associated with the b3” wagging mode becomes more and more irregular 
when it is calculated with an increasing radius of summation of the intermolecular 
interactions. The increase of this radius implies, of course, that more and more interlayer 
couplings Fori and F,,,, and, therefore, higher Fourier components are taken into account. 
The shape of the curve calculated with the largest radius of summation is strikingly 
similar to that of the experimental curve. In order to obtain the exact result we have to 
invoke the Ewald method (Born and Huang 1954). 

6. Conclusion 

Through ab initio calculations we have obtained a fractional atomic charge model for 
TCNE, which yields a good representation of the electrostaticintermolecularinteractions, 
as well as a fairly good transition dipole moment for the b,, out-of-plane wagging 
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vibration in which we are especially interested. We have refined the lattice dynamics 
calculations of Chaplot et a1 (1983) on solid TCNE, by addition of the interaction between 
these charges to the usual atom-atom potential and by the use of a more realistic force 
field for the internal molecular vibrations. The latter refinement did not prove essential 
for the shape of the vibron dispersion curves (although it changes the vibrational fre- 
quencies considerably), but the addition of the electrostatic interactions shows clearly 
that the anomalous vibron dispersion found by inelastic neutron scattering for the bJu 
wagging mode is due to strong transition dipole-dipole coupling. In a further analysis 
we have established that this coupling will only lead to such an irregular shape of the 
vibron dispersion curve for specific orientations of the molecular transition dipole 
moments in the two sublattices of TCNE and for specific directions of the wavevector k .  
The observed hump in the dispersion curve is due to the relative importance of high 
Fourier coefficients, which are given as two-dimensional lattice sums for the dipole- 
dipole interactions between different crystal layers perpendicular to the wavevector k.  
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